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Theoretical Analysis of the Effects of Noise on Diffusion
Tensor Imaging

Adam W. Anderson*

A theoretical framework is presented for understanding the
effects of noise on estimates of the eigenvalues and eigenvec-
tors of the diffusion tensor at moderate to high signal-to-noise
ratios. Image noise produces a random perturbation of the
diffusion tensor. Power series solutions to the eigenvalue equa-
tion are used to evaluate the effects of the perturbation to
second order. It is shown that in anisotropic systems the ex-
pectation value of the largest eigenvalue is overestimated and
the lowest eigenvalue is underestimated. Hence, diffusion an-
isotropy is overestimated in general. This result is independent
of eigenvalue sorting bias. Furthermore, averaging eigenvalues
over a region of interest produces greater bias than averag-
ing tensors prior to diagonalization. Finally, eigenvector
noise is shown to depend on the eigenvalue contrast and
imposes a theoretical limit on the accuracy of simple fiber
tracking schemes. The theoretical results are shown to agree
with Monte Carlo simulations. Magn Reson Med 46:
1174 –1188, 2001. © 2001 Wiley-Liss, Inc.
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Diffusion tensor imaging (DTI) is a noninvasive method of
characterizing tissue microstructure (1). In simple models
of water diffusion in tissues, the directional dependence of
diffusion is defined by the diffusion tensor. For example,
the directions of highest and lowest diffusion are eigen-
vectors of the tensor and the diffusion coefficients in these
directions are the corresponding eigenvalues. The anisot-
ropy of diffusion in tissues is due primarily to cell mem-
branes (2,3). Hence, the diffusion tensor depends on the
cellular structure of tissues. DTI has been used to classify
tissues on the basis of diffusion anisotropy (4), character-
ize changes associated with disease (5–7) and aging (8),
and construct three-dimensional models of fiber tracts (9–
11).

The diffusion tensor is estimated using a set of diffusion
weighted images. Image noise produces errors in the cal-
culated tensor and hence in its eigenvalues (principal dif-
fusivities) and eigenvectors (principal axes). Random vari-
ations in these quantities complicate the analysis and in-
terpretation of DTI experiments. For example, a basic step
in quantifying diffusion is the calculation of mean eigen-
values of the tensor over repeated measures in a pixel, or
across pixels in a homogeneous region of interest (ROI).
Typically, this is accomplished by diagonalizing each in-
dependent measure of the tensor and averaging the corre-
sponding eigenvalues. However, to perform this calcula-
tion some rule must be used to identify the corresponding
eigenvalues in the independent measurements. At high

signal-to-noise ratio (SNR) this is trivial, but otherwise
noise perturbs the eigenvalues, making misclassification
more likely. Pierpaoli and Basser (12) used Monte Carlo
simulations to show that sorting eigenvalues by magnitude
leads to an overestimate of the highest eigenvalue and an
underestimate of the lower eigenvalue. This in turn leads
to an overestimate of diffusion anisotropy. Hence, the dif-
ference between eigenvalues in an isotropic system can
appear to be statistically significant. Other studies have
used imaging experiments and/or simulations to evaluate
the sensitivity of various anisotropy measures to noise
(13,14). Using eigenvector information (15) or a combina-
tion of eigenvalues and eigenvectors in a dyadic tensor
(16) can reduce the sorting bias significantly. However, in
anisotropic systems a bias persists even after averaging
over a hypothetical, infinitely large ROI (16). The effects of
noise on fiber tracking have also been studied using nu-
merical simulations (17–19).

This study uses perturbation theory to evaluate the ef-
fects of noise when the sorting procedure is perfect (i.e.,
corresponding principal axes are correctly identified). The
effects of noise on eigenvalues and eigenvectors are found
first for the case of asymmetric diffusion (three distinct
eigenvalues). Systems with symmetry (both isotropic and
axially symmetric diffusion) are considered next. The for-
malism is used to show that the eigenvalue bias can be
reduced by a factor of 1/N when combining N indepen-
dent measurements of the diffusion tensor. The eigenvec-
tor noise is then evaluated for an axially symmetric system
and the implications of this for MR fiber tracking are
discussed. Finally, predictions of the theory are compared
to Monte Carlo simulations.

THEORY

The dependence of the NMR signal on the diffusion tensor
in a pulsed gradient spin echo (PGSE) experiment depends
on the weighting matrix, b̃, according to the relation (1):

S~b̃! 5 S0exp~2 O
i,j51

3

bijDij! [1]

where the Dij are elements of the diffusion tensor, D̃, and
the bij are elements of the weighting matrix, given by (20):

bij 5 g2GiGjd
2SD 2

d

3D
in the case that gradient ramp times can be ignored and
cross terms (21) are insignificant or explicitly cancelled
(22). In this expression, Gi is the gradient pulse amplitude
in the ith direction (G1 5 Gx, etc.), d is the pulse duration,
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D the interval between rising edges of the two pulses, and
g the gyromagnetic ratio. The direction in which gradients
are applied can be described by a unit (column) vector r̂ 5
(r1r2r3)T (T is the transpose operator). If G0 5 (G1

2 1 G2
2 1

G3
2)1/ 2 is the magnitude of the gradient pulse, then Gi 5

riG0 and:

bij 5 rirj z g2G0
2d2SD 2

d

3D . [2]

Summing over diagonal elements, we have:

tr~b̃! 5 g2G0
2d2SD 2

d

3D [3]

which is equivalent to the b factor of the scalar diffusion
coefficient measurement (23). Combining Eqs. [2] and [3],
the matrix elements are bij 5 rirj z tr(b̃). Substituting into
Eq. [1], one finds:

S~b̃! 5 S0e2tr~b̃!zr̂TD̃r̂ [4]

which shows explicitly how signal depends on gradient
orientation and the scalar weighting factor, tr(b̃). In the
absence of noise, the diffusion tensor can be determined
accurately by fitting Eq. [4]. If noise is significant, however,
the tensor determined from measurements of S(b̃) will
differ from the true diffusion tensor. Here and below, we
will distinguish the measured tensor, D̃, from its true
value, D̃0. In this case, Eq. [4] should be replaced by:

S~b̃! 5 S0e2tr~b̃ !zr̂TD̃0 r̂ 1 h. [5]

It is assumed that the noise, h, is independent of b̃ and is
normally distributed with mean zero and variance sh

2.
Hence, the statistical expectation value of S(b̃) is:

^S~b̃!& 5 S0e2tr~b̃ !zr̂TD̃ 0 r̂.

Taking the logarithm of both sides of Eq. [5] and defining
y 5 ln(S) and y0 5 ln(S0), one finds:

y~b̃! 5 y0 2 tr~b̃! z r̂TD̃0r̂ 1 lnS1 1
h

^S~b̃!&
D

5 y0 2 tr~b̃! z r̂TD̃0r̂ 1
h

^S~b̃!&
2

1
2 S h

^S~b̃!&
D2

1 . . . . [6]

If we neglect terms second order and higher in ε [
h/^S(b̃)&, then:

y~b̃! 5 y0 2 tr~b̃! z r̂TD̃0r̂ 1 ε. [7]

In this case, the y(b̃) are normally distributed with mean
^y(b̃)& 5 y0 2 tr(b̃) z r̂TD̃0r̂ and variance:

sε
2 5 sh

2/^S~b̃!&2 [8]

which depends on b̃. Fitting y(b̃) provides an estimate, D̃,
of the true tensor (1).

Perturbation Expansion

Here stationary state perturbation theory (24) is used to
find the effects of errors in D̃ on the calculated eigenvalues
and eigenvectors. The measured diffusion tensor, D̃, is
related to the true tensor, D̃0, by:

D̃ 5 D̃0 1 Ṽ [9]

where Ṽ is a random, symmetric matrix. If the matrix
elements of the perturbation Ṽ are small, then the eigen-
values can be expanded in a power series. The form of the
expansion depends on the magnitude of the perturbation
relative to the smallest difference between the eigenvalues
of D̃0. If the matrix elements of Ṽ are all small compared to
the eigenvalue differences, then the system is considered
to be nondegenerate. If, on the other hand, the matrix
elements of Ṽ are comparable to or larger than the eigen-
value differences, the system is degenerate and the approx-
imation must be modified.

Nondegenerate Case

In the simplest case, the three eigenvalues are distinct and
the eigenvectors form an orthonormal basis in three di-
mensions. An eigenvalue and the corresponding eigenvec-
tor together define an eigenstate of the system. For state i,
the eigenvalue and eigenvector can be expanded in power
series:

li 5 li0 1 li1 1 li2 1 . . .

vi 5 vi0 1 vi1 1 vi2 1 . . . [10]

where li0 and vi0 are the eigenvalue and eigenvector,
respectively, in the case of zero noise and therefore are
independent of Ṽ. li1 and vi1 are the first-order correc-
tions to the eigenvalue and eigenvector, i.e., they depend
on Ṽ to first order. Similarly, li2 and vi2 are the second-
order corrections and depend on Ṽ to second order. The
vectors vi, etc., are considered column vectors; the corre-
sponding row vectors are given by vi

T.
Calculation of the terms on the right-hand side of Eq.

[10] is straightforward for low orders (details are given in
Appendix A). The first-order correction to eigenvalue i is:

li1 5 vi0
T Ṽvi0 [11]

which is the perturbation evaluated in the unperturbed
eigenstate (principal axis direction). The eigenvectors are
normalized to all orders, so the perturbations represent
changes in orientation rather than magnitude. Hence, the
first-order correction is orthogonal to the unperturbed eig-
envector:

vi0
T z vi1 5 0. [12]

Its projection onto the other two eigenvectors is given by:
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vj0
T z vi1 5

vj0
T Ṽvi0

li0 2 lj0
~i Þ j!. [13]

This implies that the eigenvector vi is rotated from the true
eigenvector vi0 by angle:

wk <
vj0

T Ṽvi0

li0 2 lj0
~i Þ j Þ k! [14]

around vk (see Appendix A). According to Eqs. [11] and
[13], when evaluated in the eigenbasis of D̃0, the diagonal
matrix elements of Ṽ give the eigenvalue shifts and the
off-diagonal matrix elements give the eigenvector errors to
first order. These equations have been derived by Hext (25)
using a different approach.

The second-order correction to the eigenvalues is given
by:

li2 5 O
k51
~kÞi!

3
~vk0

T Ṽvi0!
2

li0 2 lk0
. [15]

This eigenvalue shift is due to the first-order eigenvector
rotation. The perturbation adds a small contribution to vi

from the other axes, according to Eq. [13]. The second-
order correction in Eq. [15] represents the contribution of
this small admixture of other states to the shift of li. Note
that states of lower diffusivity (lk0 , li0) contribute a
positive correction, and states of higher diffusivity (lk0 .
li0) contribute a negative correction (distinct states ‘repel’
each other in the second order shift). In particular, the net
shift is always positive for the highest diffusivity and
always negative for the lowest diffusivity. First and sec-
ond-order corrections to eigenvalues and eigenvectors are
shown schematically in Fig. 1.

For a given perturbation Ṽ, the first and second-order
eigenvalue corrections are given by Eqs. [11] and [15].
Suppose that the diffusion tensor is measured N times,
each measurement producing three eigenvalues. On aver-
age, the eigenvalues will be shifted by the expectation
values of the expressions given above. The expectation
value of the first order shift is:

^li1& 5 vi0
T ^Ṽ&vi0

5 0 [16]

since we assume the perturbation has zero mean. Hence,
the first-order correction vanishes. The expectation value
of the second order shift is:

^li2& 5 O
k51
~kÞi!

3
^~vk0

T Ṽvi0!
2&

li0 2 lk0
. [17]

The contribution of state k to the second-order shift is
simply the ratio of the mean square perturbation matrix
element to the difference in diffusivities of the two states.
Combining Eqs. [17], [16], and [10], we find that to second
order the diffusivities are given by:

^li& 5 li0 1 O
k51
~kÞi!

3
^~vk0

T Ṽvi0!
2&

li0 2 lk0
. [18]

Note that the bias increases as the off-diagonal elements of
the perturbation increase. For given matrix elements, the
bias is larger when the unperturbed eigenvalues are closer
together. If the eigenvalues of two or all three states are so
close that their differences are not much larger than the

FIG. 1. The effects of a single perturbation, Ṽ, on the eigenvalues
and eigenvectors of the diffusion tensor. First and second-order
eigenvalue shifts are shown in a for a hypothetical two-dimensional
system. The effects of Ṽ (in black) and 2Ṽ (in gray) for each state are
opposite in the first-order correction, but are identical in the second
order. The second-order shifts of the two states are equal and
opposite; the higher state is shifted up, while the lower state is
shifted down. First and second-order eigenvector errors are shown
in b. Perturbations of opposite sign produce the opposite first-order
error, but the same second-order error (effects of Ṽ are shown in
black, those of 2Ṽ are in gray). For a symmetric distribution of
perturbations, the first-order eigenvalue and eigenvector errors av-
erage to zero, but the second-order errors have non-zero mean.
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perturbation, then the expansion fails and the states must
be considered degenerate.

Degenerate Case

If two or three eigenvalues are the same, then any linear
combination of the corresponding eigenvectors is also an
eigenvector (with the same eigenvalue). We are free to
choose any eigenbasis within the subspace corresponding
to the degenerate eigenvalues (such a subspace will also be
referred to as a level). The most convenient choice diago-
nalizes the perturbation. Hence, the qth eigenvector in the
space corresponding to the eigenvalue lj0 is written vj0

q

and:

vj0
pTṼvj0

q 5 εj
q z dpq

where εj
q is an eigenvalue of Ṽ in this level and dpq is the

Kronecker delta. The power series expansions of the eig-
envalues and eigenvectors corresponding to Eq. [10] are:

li
q 5 li0 1 li1

q 1 li2
q 1 . . .

vi
q 5 vi0

q 1 vi1
q 1 vi2

q 1 . . . . [19]

The calculation of the terms on the right are analogous to
those of the nondegenerate case and are outlined in Ap-
pendix B.

The first-order correction to the eigenvalue li
q is:

li1
q 5 vi0

qTṼvi0
q

5 εi
q [20]

that is, the corresponding eigenvalue of the perturbation
matrix. The second-order correction is:

li2
q 5 O

j51
~jÞi!

3 O
p51

nj ~vj0
pTṼvi0

q !2

li0 2 lj0
[21]

where nj is the degeneracy (number of dimensions) of level
j. The second order shift depends on the matrix elements
of the perturbation between the state i and all states with
different zero order eigenvalue. Notice that this expression
gives the second-order shift of a nondegenerate level, Eq.
[15], as a special case (ni 5 1, nj 5 1 or 2). Since Eq. [21]
covers both degenerate and nondegenerate cases, it can be
used to show that the sum of the second-order shifts of all
states is zero (see Appendix C):

O
i51

3 O
q51

ni

li2
q 5 0. [22]

To evaluate the expectation value of the first-order shift,
assume that the probability density function, P(Ṽ), for the
perturbation satisfies:

P~Ṽ! 5 P~2Ṽ!

that is, the perturbation is symmetrically distributed
around zero. This condition is satisfied by the multivariate
(zero-mean) normal distribution, for example. Since Ṽ and
2Ṽ share eigenvectors but have eigenvalues of opposite
sign, the expectation value of Eq. [20] represents the inte-
gral of an odd function over the entire six-dimensional
space of perturbations. This symmetry requires that:

^li1
q & 5 0. [23]

Taking expectation values of both sides of Eq. [21] yields:

^li2
q & 5 O

j51
~jÞi!

3 O
p51

nj ^~vj0
pTṼvi0

q !2&

li0 2 lj0
.

Combining this result with Eq. [23] in Eq. [19] yields:

^li
q& 5 li0 1 O

j51
~jÞi!

3 O
p51

nj ^~vj0
pTṼvi0

q !2&

li0 2 lj0
. [24]

Taking the expectation value of Eq. [22] shows that the
sum of the eigenvalues is unbiased. Hence, measurements
of the trace of the diffusion tensor are unbiased to second
order.

For diffusion in three dimensions, Eq. [24] can be sim-
plified because the degenerate space can have only two or
three dimensions. In the case of a three-dimensional de-
generate space (isotropic diffusion), there is only one state
(i 5 1), and no other state j to couple to, so the shift is
zero:

^l1
1& 5 ^l1

2& 5 ^l1
3& 5 l1,0. [25]

If the degenerate space has two dimensions (axially sym-
metric diffusion), then there is only one state ( j 5 2) to
couple to and it is nondegenerate (nj 5 1). In this case, Eq.
[24] reduces to:

^l1
q& 5 l1,0 1

^~v2,0
T Ṽv1,0

q !2&

l1,0 2 l2,0
.

If the degeneracy is not exact, but the level splittings
(eigenvalue differences) are not all large compared to the
perturbations, then this formalism can still be used. In this
case, D̃0 can be split into two parts: D̃00 in which the
closely spaced levels are exactly degenerate and D̃01

which produces the small level splitting. The second part,
D̃01, can be added to the perturbation and the analysis
carried forward in a straightforward way. In this case the
expected first-order shift of the ‘degenerate’ levels will not
be zero, but will be given by the matrix elements of D̃01.

Averaging Tensor Measurements

If the means of the principal diffusivities are desired in a
region of interest (ROI), averaging can be done at any of
three steps of the calculation. First, the NMR signal can be
averaged across pixels in the ROI, and the average signal
fitted to find the elements of the tensor, which can then be
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diagonalized. Second, the diffusion tensor can be calcu-
lated separately in each pixel and the average of these
tensors can be diagonalized. Third, the eigenvalues of D̃
can be found in each pixel and these can be averaged. The
purpose of this section is to compare the eigenvalue bias
inherent in each of these strategies and to show that the
third option, although commonly used, leads to the largest
bias.

Averaging the NMR signal over N pixels in a homoge-
neous ROI, the analog of Eq. [6] is:

ln~S# ~b̃!! 5 y0 2 tr~b̃! z r̂TD̃0r̂ 1
h#

^S~b̃!&
1 . . .

where bars indicate ROI averages and sh#
2 5 sh

2/N if the
noise in different voxels is independent. Averaging the N
measurements of S(b̃) reduces the noise variance by the
factor 1/N. This decreases the mean squared perturbation
matrix elements (in Eqs. [18] and [24]), and hence the
eigenvalue bias by the factor 1/N (see Appendix D).

In the second method, the diffusion tensor is calculated
separately in each pixel, then averaged prior to diagonal-
ization. In this case, the true diffusion tensor is estimated
by the mean of N measurements.

D
.

5
1
N O

n51

N

D̃n [26]

where D̃n is the diffusion tensor on the nth measurement.
If Ṽn is the random perturbation on the nth measurement,
then D̃n 5 D̃0 1 Ṽn, and:

D
.

5 D̃0 1 V
.

[27]

where V
.

is the mean perturbation matrix:

V
.

5
1
N O

n51

N

Ṽn. [28]

The mean perturbation affects the eigenvalues of the mean
tensor in exactly the same way that the individual pertur-
bations, Ṽn, affect the eigenvalues of D̃n. Hence, if l# i is an
eigenvalue of D., then by analogy to Eq. [18],

^l# i& 5 li0 1 O
k51
~kÞi!

3
^~vk0

T V
.

vi0!
2&

li0 2 lk0
[29]

assuming the unperturbed tensor is uniform over the ROI.
Since the Ṽ 5 Ṽn are independent,

^~vk0
T V

.
vi0!

2& 5 ^~vk0
T Ṽvi0!

2&/N [30]

Eq. [29] becomes:

^l# i& 5 li0 1
1
N

z O
k51
~kÞi!

3
^~vk0

T Ṽvi0!
2&

li0 2 lk0

5 li0 1
^li2&

N
[31]

for the nondegenerate case, and using Eq. [24]:

^l# i
q& 5 li0

q 1
1
N O

jÞi

O
p51

nj ^~vj0
pTṼnvi0

q !2&

li0 2 lj0

5 li0
q 1

^li2
q &

N
[32]

for a degenerate level. Note that this is the same decrease
in bias obtained by averaging the signal over the ROI, prior
to fitting for the diffusion tensor.

The third strategy of calculating the eigenvalues in each
pixel, then averaging these over the ROI gives the bias
found in Eq. [18] (nondegenerate case) or Eq. [24] (degen-
erate case). Since both the first and second strategies re-
duce the bias by a factor 1/N compared to this method,
they are preferable. Another advantage of the first two
strategies is that they avoid the complications of eigen-
value sorting.

Implications for MR Fiber Tracking

Although eigenvalue bias is a larger concern for conven-
tional DTI, eigenvector noise has greater impact on MR
fiber tracking. As a specific example, consider the case of
axially symmetric diffusion, with the largest diffusivity
along the symmetry axis. This is the simplest model of
diffusion in white matter axon bundles in the brain. La-
beling the fast diffusion axis with the index i 5 1, the
corresponding eigenvector is:

v1 5 v1,0 1 O
j52

3 S vj0
T Ṽv1,0

l1,0 2 lj0
Dvj0 [33]

to first order. Note that Eq. [13] has been used since the fast
diffusion level is nondegenerate (any eigenvector basis can
be chosen in the degenerate space perpendicular to v1).

In its simplest form, fiber tracking rests on the assump-
tion that v1 identifies the local tangent to a fiber. Hence,
beginning at point R in space, another point along the path
can be found at R 6 av1, where a is the step size (assumed
to be small compared to the local radius of curvature of the
fiber). This process can be repeated, moving in both direc-
tions from the initial point, until some termination crite-
rion is met (e.g., the anisotropy of D̃ falls below a threshold
value). The difference between v1 and the true eigenvector,
v1,0, represents a limit to the accuracy of the fiber paths
generated this way.

Assuming that D̃0 is spatially invariant, its eigenvector
basis {v1,0, v2,0, v3,0} can be chosen to be spatially invari-
ant. Let the coordinates of a point relative to this basis be
( x1, x2, x3). Ideally, a fiber path beginning at the origin
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satisfies x2 5 x3 5 0 at all points along the path. However,
because v1 differs from v1,0, the coordinates x2 and x3 will
be non-zero generally. For example, the component of v1

in the direction of v2,0 is, using Eq. [33],

v2,0
T z v1 <

v2,0
T Ṽv1,0

l1,0 2 l2,0

so a step of length a along v1 corresponds to an increment
in x2 given by:

dx2 < a z
v2,0

T Ṽv1,0

l1,0 2 l2,0
.

Since Ṽ varies randomly from voxel to voxel, the calcu-
lated fiber path executes a random walk around the v1,0

axis. After Ns steps, the x2 displacement is:

x2 < a z O
n51

Ns v2,0
T Ṽnv1,0

l1,0 2 l2,0

where Ṽn is the perturbation for the nth step. The expec-
tation value of x2 is:

^x2& < a z O
n51

Ns v2,0
T ^Ṽn&v1,0

l1,0 2 l2,0

< 0

to first order, but the mean squared value is:

^x2
2& < a2 z KO

n51

Ns v2,0
T Ṽnv1,0

l1,0 2 l2,0
z O

p51

Ns v2,0
T Ṽpv1,0

l1,0 2 l2,0
L

< a2 z O
n51

Ns O
p51

Ns ^v2,0
T Ṽnv1,0 z v2,0

T Ṽpv1,0&

~l1,0 2 l2,0!
2 .

Suppose the step size, a, is chosen to be a particular
fraction of the voxel width w:

a 5
w
M

for integer M. There is only one sample of Ṽ per voxel, so
if steps n and p are in the same voxel Ṽp 5 Ṽn, but
otherwise the perturbations are uncorrelated. The correla-
tion of the perturbation between steps can be accounted
for with the following approximation. For each n, we
assume that Ṽp 5 Ṽn for an average of M values of p (i.e.,
M steps), and no correlation exists for other p. In this case,

^x2
2& < a2M z O

n51

Ns ^~v2,0
T Ṽnv1,0!

2&

~l1,0 2 l2,0!
2 .

Similarly, each value of Ṽn is repeated an average of M
times in the sum. If each voxel that the fiber path travels
through is given an index m, then the summation can be
rewritten as:

^x2
2& < a2M2 z O

m51

Nv ^~v2,0
T Ṽmv1,0!

2&

~l1,0 2 l2,0!
2

where the Ṽm are independent random matrices, and NV is
the number of voxels traversed by the path. Since the Ṽm

are sampled from the same distribution,

^x2
2& < a2M2NV z

^~v2,0
T Ṽv1,0!

2&

~l1,0 2 l2,0!
2

< w2NV z
^~v2,0

T Ṽv1,0!
2&

~l1,0 2 l2,0!
2 .

The root-mean-square (RMS) deviation of the calculated
path from the true path is then:

~x2!RMS < w
~v2,0

T Ṽv1,0!RMS

l1,0 2 l2,0
z ÎNV. [34]

This has the usual form for a random walk: the RMS
displacement is equal to the step size times the square root
of the number of steps. Note that the effective step size
along the fiber is the voxel width, since this is the corre-
lation length of the perturbation.

In order for the RMS path error to be less than the voxel
width, Eq. [34] implies:

l1,0 2 l2,0

~v2,0
T Ṽv1,0!RMS

. ÎNV. [35]

The term on the left-hand side can be interpreted loosely
as the diffusivity contrast-to-noise ratio (CNR) in the fiber
voxels. According to this relation, accurate fiber tracking
requires that the diffusivity CNR be at least as large as the
square root of the fiber length (measured in voxels). An
analogous expression gives the RMS displacement in the
v3,0 direction.

From a practical point of view it is more useful to ex-
press Eq. [35] in terms of the noise variance, which can be
estimated directly from an image. The off-diagonal matrix
elements of the perturbation are related to the SNR of an
unweighted (b̃ 5 0) image by:

^~vj0
T Ṽvi0!

2& 5 Ssh

S0
D2

z ~R̃@X̃TW̃X̃#21R̃T!i1j12,i1j12 ~i Þ j! [36]

where X̃ is the design matrix for multivariate linear regres-
sion, W̃ is a diagonal weighting matrix, and R̃ transforms
the noise covariance matrix to the principal axis coordi-
nate frame of D̃0 (see Appendix D). Substituting this rela-
tion into Eq. [35], one finds:
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S0

sn
.

ÎNV z ~R̃@X̃TW̃X̃#21R̃T!55

l1,0 2 l2,0
. [37]

This relation defines the minimum SNR required for accu-
rate fiber tracking using simple algorithms. Image SNR can
be improved by increasing voxel size, up to the point that
partial volume averaging becomes significant in fiber vox-
els. Alternatively, SNR can be increased by averaging re-
peated measures. For given fiber diameter (which sets
voxel size), length (which sets NV), and diffusion contrast
(l1,0 2 l2,0), Eq. [37] determines the minimum SNR, and
hence imaging time, required for accurate tracking.

NUMERICAL SIMULATION

Monte Carlo simulations were used to estimate the effects
of noise on calculated diffusion tensor eigenvalues. Signal
amplitude was calculated (according to Eq. [5]) using three
values of diffusion weighting, tr(b̃) 5 0, 500, and
1000 s/mm2, the non-zero values applied in six directions:

r̂T 5 5
~1, 0, 0!
~0, 1, 0!
~0, 0, 1!

1

Î2
~1, 1, 0!

1

Î2
~1, 0, 1!

1

Î2
~0, 1, 1!

.

The true diffusion tensor, D̃0, was chosen to be isotropic,
axially symmetric, or asymmetric. In each case, the mean
diffusivity, lmean [ tr(D̃0)/3, was chosen to approximate
that found in the human brain (lmean 5 0.7 3 1023 mm2/s).
For the two anisotropic cases, the range of diffusivities,
lmax 2 lmin, was chosen to be lmean/2 and the true eigen-
vectors lay along the x, y, and z directions.

Complex noise was calculated from two (zero mean)
Gaussian random variables, x and y, and added in quadra-
ture, z 5 x 1 iy. The standard deviation of the noise was
the same in each channel, sx 5 sy 5 s. The noise was
added to the ideal (real) signal and the magnitude of the
sum represented the measured signal. This calculation
was performed for each of 13 measurements (six gradient
directions at two non-zero amplitudes, plus an un-
weighted image) for each of n 5 25 pixels in a hypothet-
ical, uniform ROI. Components of the diffusion tensor in
each pixel were then determined by a weighted least-
squares fit of ln(S) as a function of the elements bij. All
calculations were performed in MATLAB (MathWorks,
Natick, MA).

The eigenvalues and eigenvectors of a tensor have no
inherent ordering. The order established by a particular
numerical routine depends on the algorithm employed
and the precise values of the tensor components. For ex-
ample, very low levels of noise can lead to a reordering of
the calculated eigenvalues and eigenvectors, even though
the eigenvalues and eigenvectors themselves are modified
only slightly. Therefore some care must be taken in aver-

aging eigenvalues (or eigenvectors) across independent
measurements, as in the different pixels in an ROI. The
calculated mean values will depend on how correspond-
ing eigenvalues are identified in different pixels, i.e., on
how they are sorted. In the simulation, ROI-averaged dif-
fusivities were calculated in three ways. First, the tensor in
each pixel was diagonalized and the eigenvalues were
assigned to the variable lmax, lmid or lmin according to
magnitude. This will be referred to as magnitude sorting.
Second, the mean tensor, D., in the ROI was calculated.
Eigenvalues of the individual pixel tensors were then
sorted by maximizing the similarity to the mean tensor,
using the dyadic tensor overlap statistic (16):

Ct 5

O
i51

3

lil# i~vi
Tv# i!

2

O
i51

3

lil# i

or the analogous expression for the degenerate case (tensor
sorting). This involves testing the six possible mappings of
the eigenvalues (and eigenvectors) of one tensor onto those
of the other and choosing the pairing that produces the
largest value of Ct. This is intended to identify the best
match between the two diffusion ellipsoids. The pixel
eigenvalues, li, assigned to each mean tensor eigenvalue,
l# i, were then averaged to find the mean over the ROI.
Third, the eigenvalues of the mean tensor D

.
were calcu-

lated directly. This will be referred to as the mean tensor
calculation. This approach does not explicitly sort eigen-
values from individual pixels, but averages the diagonal
elements of the individual tensors in a common reference
frame. The alternate method of averaging the signal over
the ROI prior to fitting and diagonalizing is equivalent to
the mean tensor calculation under the conditions used
here and so was not tested independently.

Each of the procedures above produced three average
eigenvalues for the ROI. In order to make a precise esti-
mate of their expectation values, the process was repeated
until 104 samples were generated for each eigenvalue and
method. Again, some procedure must be chosen to match
the eigenvalues across samples. Magnitude sorting was
used to find the mean values of the (ROI-averaged) lmax,
lmid, and lmin. Tensor sorting was used to find the mean
values for the two remaining methods.

The predictions of Eqs. [18] and [31] (or Eqs. [24] and
[32] for the degenerate case) were tested by evaluating the
off-diagonal elements of the perturbation matrix. The
mean-squared matrix elements were calculated over all
pixels and samples. At moderate and high SNR and the
relatively large eigenvalue differences used here, the ten-
sor sorting algorithm is expected to perform with near-
perfect accuracy. Hence, Eq. [18] (or Eq.[24]) should agree
with the ROI averages obtained by tensor sorting. In addi-
tion, Eq. [31] (or Eq. [32]) should agree with the ROI
averages obtained by the mean tensor calculation. The
theory does not apply to magnitude sorting, which was
simulated for comparison only.

To determine the accuracy of the predictions at various
SNR levels, the entire procedure was repeated for several
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values of s. SNR was defined as the maximum (i.e., un-
weighted) signal, S0, divided by the standard deviation of
the noise, s. The simulation was performed for SNR values
from 20 to 100 (in steps of 10).

A similar approach was used to evaluate the effects of
noise on fiber tracking and to compare these to the predic-
tions of the theory. Diffusion was assumed to be axially
symmetric around x̂, with:

l10 2 l20 5 l10 2 l30 5 lmean/2.

All paths started from the origin. At each step, noise was
added to the ideal signal for the 13 measurements de-
scribed above and the eigenvectors of the resulting diffu-

sion tensor were determined. To minimize sorting errors,
the eigenvectors (and eigenvalues) were sorted according
to their similarity to the true diffusion tensor (using the
tensor sorting algorithm). A new path position was calcu-
lated by stepping a fixed distance (one voxel width) along
v1, the eigenvector corresponding to the fast diffusion axis.
This procedure was repeated for a total of 256 steps for
each fiber. The x2 and x3 coordinates of the path, both zero
ideally, were determined as a function of step number. The
calculation was carried out for 104 fibers and the mean and
standard deviation of the path errors were found. The
entire procedure was performed for SNR values 35, 50, and
70. Otherwise, the parameters of the simulation were the
same as in the eigenvalue bias simulation.

FIG. 2. Estimated ROI eigenvalues as functions of SNR for isotropic diffusion (top row, subplots a, b, c), axially symmetric diffusion (middle
row, subplots d, e, f), and asymmetric diffusion (bottom row, subplots g, h, i). ROI averages were calculated using magnitude sorting (left
column, subplots a, d, g), tensor sorting (middle column, subplots b, e, h), and mean tensor calculations (right column, subplots c, f, i). The
lower lines in e and f represent the two degenerate states, which have nearly the same eigenvalues. True eigenvalues are displayed as
dashed lines. Predictions of second-order perturbation theory are shown as solid lines. Pixel-by-pixel tensor sorting produces less bias than
magnitude sorting and the mean tensor calculation improves on both other methods. Second-order perturbation theory correctly predicts
the bias when the ratio of the perturbation matrix elements to the eigenvalue splittings are much less than one. Standard errors of the mean
values are smaller than the plotting symbols, and are not shown.
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RESULTS AND DISCUSSION

The mean eigenvalues in the simulated ROI are shown in
Fig. 2 for the cases of isotropic, axisymmetric, and asym-
metric diffusion. The true eigenvalues and the predictions
of the perturbation expansion are also shown. For isotro-
pic diffusion (full degeneracy), magnitude sorted eigenval-
ues demonstrate a strong bias: lmax is greater and lmin is
less than the true principal diffusivity. lmid is not biased
by sorting. On the other hand, eigenvalues estimated by
pixel-by-pixel tensor sorting and the mean tensor calcula-
tion show almost no bias at these SNR levels. (All three
methods have a small bias at the lowest SNR due to the
nonlinear logarithmic transformation). For anisotropic dif-
fusion (the axially symmetric and asymmetric cases), all
three methods produce biased estimates of the eigenval-
ues. For the parameters chosen here, the bias for pixel-by-
pixel tensor sorting is somewhat less than that of magni-
tude sorting. The bias of the mean tensor calculation is
significantly less than both other methods.

The theoretical predictions overestimate the bias where
it is largest. In the worst case (asymmetric diffusion, sub-
plot h) at the lowest SNR value (SNR 5 20), the bias of the
highest diffusivity is overestimated by 70%. Low precision
is expected in this case, however. The second-order ap-
proximation used to make the prediction is based on the
assumption that the ratios:

aik ;
vk0

T Ṽvi0

li0 2 lk0
[38]

are small compared to unity. For the point in question, the
standard deviations of the aik are as large as (sa)max 5 0.6,
so values of aik on the order of unity are likely. In this case,
higher-order terms in the perturbation expansion cannot

be discarded. At higher SNR, the second-order approxima-
tion is justified (since (sa)max scales as SNR21). For the
corresponding point at SNR 5 50 we have (sa)max 5
0.25 and the predicted bias of the largest eigenvalue equals
the tensor sorted value to within 7% (the eigenvalues agree
to 0.1%). At each SNR the theoretical prediction agrees
better with the mean tensor calculation than the tensor
sorted value, since in the former case aik is N21/ 2 5 0.2
times the value on the right-hand side of Eq. [38].

The mean tensor calculation performs better than pixel-
by-pixel tensor sorting because it takes greater advantage
of multiple measures. The eigenvalues of the mean tensor
equal the mean values of the diagonal elements of the
individual tensors, evaluated in the diagonal frame of the
mean tensor. By averaging tensor elements in a common
coordinate frame, the effects of noise average out for large
N. Averaging eigenvalues, rather than tensors, amounts to
averaging tensor elements in different coordinate frames,
which leads to biased estimates even for infinitely many
independent measurements. In general, it is better to av-
erage tensors then diagonalize, than it is to diagonalize
tensors then average. However, averaging tensors offers no
better reduction in bias than averaging the diffusion-
weighted signal in the ROI prior to fitting for the tensor
components. (In fact, at low SNR calculations based on the
average signal will have better noise immunity than the
mean tensor calculation.) The same arguments apply to
‘time domain averaging,’ which involves repeated mea-
sures of the diffusion tensor in a given pixel (14). The
relations in Eqs. [31] and [32] apply to this method as well,
if N is taken to be the number of repeated measurements.
Hence, time domain averaging reduces the bias of pixel-
by-pixel tensor sorting by 1/N. However, the same gain is
realized simply by averaging the diffusion weighted signal
across acquisitions prior to fitting.

FIG. 3. Track error as a function of step
number. Errors in eigenvector orientation
produce position errors in fiber tracks. The-
oretical predictions (in gray) and Monte
Carlo simulations (in black) are shown for
SNR 5 35, 50, and 70. The standard devi-
ation of track positions (a) increases with
the square root of step number and the
standard deviation of image noise (the lines
for SNR 5 70 nearly coincide). The mean
error (b) is proportional to step number and
(at higher SNR) the variance of image noise.
Results for the x3 axis are the same.
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These relations imply the following stratification. At
low SNR, bias is minimized by averaging the NMR signal
across repeated measures prior to fitting for tensor compo-
nents. At moderate SNR (aik ! 1), averaging across indi-
vidually determined tensors is equally effective. Only at
high SNR (where aik is negligible) is eigenvalue averaging
equivalent to the other methods.

The effect of image noise on fiber paths is shown in Fig.
3. The standard deviation of track errors is shown in Fig.
3a as a function of step number. Results of Monte Carlo
simulations are compared to the predictions of Eq. [34].
The simulation results follow the expected square root
dependence on step number. However, the theoretical pre-
dictions overestimate the effects of noise at lower SNR.
According to the first-order theory, the standard deviation
of track errors scales as sh (i.e., as SNR21); however, the
actual errors increase more slowly with increasing noise.

According to perturbation theory, the mean track error
in each step is zero to first order, but is generally non-zero
in second order. For the simulated system, the mean is the
same for each step, so the error accumulates over many
steps to produce a small but significant track deviation.
This is shown in Fig. 3b. The mean error is proportional to
step number and (nearly) doubles when the noise in-
creases by a factor of =2 at higher SNR (e.g., going from
SNR 5 70 to SNR 5 50). The latter result supports the
prediction that the mean error is second order in the noise.
Again, the theory overestimates the effect of noise: the
second-order prediction (based on Eq. [50] of Appendix A)
overestimates the simulated value by 16% at SNR 5
70 and by 53% at SNR 5 35.

The theoretical predictions for both the mean and stan-
dard deviation of track error overestimate the true dis-
placements because the tensor sorting procedure limits
eigenvector errors (i.e., when eigenvectors are rotated suf-
ficiently by noise, the sorting procedure relabels them to
preserve the best match to the unperturbed tensor). The
simple theory presented here would predict that eigenvec-
tor components have normal distributions, but in fact the
tails of these distributions are truncated by sorting (and by
normalization). Since the largest deviations are missing
from the distributions, the actual track displacements are
smaller than predicted. As SNR increases, the distribu-
tions become more Gaussian and the theory fits the simu-
lation results more closely. This affects the second-order
calculation more, since this depends on higher-order mo-
ments of the distribution of errors. While the theory over-
estimates the simulated errors somewhat, the latter are
calculated using the value of the true tensor. In practical
situations the true tensor is not known, so the sorting used
in the simulation represents an ideal case. Fiber tracks
generated without this information may have larger posi-
tion errors.

More sophisticated methods of fiber reconstruction may
have better noise immunity than the simple scheme ana-
lyzed here. Tracking methods that regularize, or smooth,
fiber tangent information have been shown to reduce the
cumulative effects of eigenvector noise (17,26). Hence, if
the minimum SNR defined in Eq. [37] is not available (at
the desired resolution in a reasonable scan time), then
some form of regularization is required to maintain path
accuracy. Note that although regularization reduces the

first-order errors in path position, it cannot address the
path bias due to the mean second order eigenvector errors.
Fortunately, these terms are expected to be small (for mod-
erate to high SNR).

Apart from quantitative predictions of eigenvalue and
eigenvector errors, the theory presented here should aid in
understanding general features of DTI measurements, e.g.,
the functional dependence of these errors on image SNR
and diffusion contrast. As a specific example, the spatial
coherence of ‘fast axis’ eigenvectors, v1, can be a useful
indication of white matter integrity (8). A straightforward
interpretation of this quantity relates it to the similarity of
fiber orientations in neighboring voxels. However, changes
in the spatial coherence of v1 should be interpreted with
caution, since the coherence also depends on eigenvector
noise. According to Eq. [14], eigenvector errors can vary
even if image noise is constant, since these errors depend
on eigenvalue contrast as well. Hence, pathology that
makes diffusion more isotropic would be expected to de-
crease eigenvector coherence, without any changes in the
distribution of fiber orientations.

Similarly, some care should be taken in interpreting the
SNR values given for this and other studies of the effects of
noise. For a given physical system, the effects of noise on
eigenvalues and eigenvectors are determined by the matrix
elements of the perturbation. How these are related to the
noise level, sh, depends on the values of b̃ used in an
experiment (i.e., on the design matrix, X̃). For example,
discarding the intermediate value of tr(b̃) used here would
increase the eigenvalue bias at the same SNR level. Alter-
natively, for the same number of measurements the bias
could be reduced at each SNR by using any of several
better optimized encoding schemes (27–29). Hence, the
diffusion encoding scheme (and precise definition of SNR)
must be taken into account when comparing the SNR
dependence found in different studies.

As a final note, it may seem contradictory to carry the
perturbation expansion in Eq. [10] to second order after
dropping second and higher order terms in Eq. [6]. How-
ever, the expansion parameters in these power series are
different and are expected to have different magnitudes. In
Eq. [6] we neglect terms second order in h/^S(b̃)&, which is
of order 1/SNR. In Eq. [10], we retain terms second order in
aik. We assume that aik ! 1 and SNR @ 1, but allow for the
case that aik . 1/SNR. The assumption of moderate to
high SNR in unweighted images is meant to guarantee that
aik ! 1. This condition is not particularly restrictive but
may require signal averaging across repeated acquisitions
to improve image SNR.

CONCLUSIONS

At moderate and high SNR, a power series expansion of
the eigenvalues and eigenvectors of the diffusion tensor
can be used to study the effects of noise. These effects
include a shift in eigenvalues that is independent of sort-
ing bias. Second-order perturbation theory accurately pre-
dicts the bias found by Monte Carlo simulation. When
averaging the results of several independent measure-
ments, the bias is reduced by averaging individual tensors
prior to diagonalization, or by averaging the signal prior to
fitting for the tensor components. In addition, eigenvector
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noise leads to a random walk of calculated trajectories in
simple fiber tracking schemes and may represent a funda-
mental limit to accuracy. More generally, the formalism
described here can be used to estimate the contribution of
noise to experimental results and to optimize the trade-off
between SNR and resolution in DTI studies.
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APPENDIX A

Equation [10] implies that the inner product of vj0 and vi

is:

vj0
T z vi 5 dij 1 vj0

T z vi1 1 vj0
T z vi2 1 . . . . [39]

The eigenvectors are required to be orthonormal to all
orders, that is:

vj
T z vi 5 dij. [40]

Since the eigenvectors span the three-dimensional space,
we have the completeness relation:

O
k51

3

vk0 z vk0
T 5 1. [41]

Inserting this into Eq. [40] yields:

O
k51

3

~vj
T z vk0!~vk0

T z vi! 5 dij.

Substituting Eq. [39] in both terms in the sum,

O
k51

3

~djk 1 vj1
T z vk0 1 vj2

T z vk0 1 . . .!

3 ~dik 1 vk0
T z vi1 1 vk0

T z vi2 1 . . .! 5 dij

O
k51

3

djkdik 1 O
k51

3

~djkvk0
T z vi1 1 vj1

T z vk0dik!

1 O
k51

3

~djkvk0
T z vi2 1 vj1

T z vk0vk0
T z vi1 1 vj2

T z vk0dik! 5 dij.

In the second equality, terms of the same order have been
grouped together. This equation holds for arbitrary (but
small) noise levels, so it must hold separately for each
order. Setting the zero order terms on both sides to be
equal, we get the identity dij 5 dij. For the first-order
terms, we find:

O
k51

3

~djkvk0
T z vi1 1 vj1

T z vk0dik! 5 0

vj0
T z vi1 1 vj1

T z vi0 5 0.

Choosing i 5 j, the two terms on the left are the transpose
of one another. Since they are both scalars, they must be
equal, so:

vi0
T z vi1 5 0. [42]

Hence, the first-order correction to an eigenvector is or-
thogonal to the zero-order eigenvector. Evaluating the sec-
ond-order terms for i 5 j gives,

vi0
T z vi2 5 2

1
2 O

k51

3

~vk0
T z vi1!

2. [43]

The eigenvalue equation for the perturbed diffusion ten-
sor is:

D̃vi 5 livi.

Inserting the completeness relation Eq. [41] on the left, and
multiplying both sides of the resulting equation by vj0

T

from the left yields:

O
k51

3

vj0
T D̃vk0vk0

T z vi 5 livj0
T z vi.

Substituting Eq. [9] for the diffusion tensor and Eq. [10] for
the eigenvector and eigenvalue, we find:

O
k51

3

vj0
T ~D̃0 1 Ṽ!vk0~dik 1 vk0

T z vi1 1 vk0
T z vi2 1 . . .!

5 ~li0 1 li1 1 li2 1 . . .!~dij 1 vj0
T z vi1 1 vj0

T z vi2 1 . . .!. [44]

Again, terms of the same order on the left and right sides of
the equation are equal. Hence, the zero-order terms give:

O
k51

3

vj0
T D̃0vk0dik 5 li0dij

li0dij 5 li0dij

since the vk0 are eigenvectors of D̃0. Equating the first-
order terms gives:

O
k51

3

~vj0
T D̃0vk0vk0

T z vi1 1 vj0
T Ṽvk0dik! 5 li0vj0

T z vi1 1 li1dij

~lj0 2 li0!vj0
T z vi1 1 vj0

T Ṽvi0 5 li1dij. [45]
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Setting i 5 j gives the first-order correction to the eigen-
values:

li1 5 vi0
T Ṽvi0. [46]

The first-order shift of the eigenvalue equals the perturba-
tion evaluated in the unperturbed eigenstate (principal
axis direction). For i Þ j, Eq. [45] gives:

vj0
T z vi1 5

vj0
T Ṽvi0

li0 2 lj0
~i Þ j!. [47]

Equation [42] shows that the first-order correction to the
eigenvectors is orthogonal to the zero-order eigenvector of
the same state. Equation [47] gives the projection of the
correction onto the other axes. The eigenvector vi is ro-
tated from the true eigenvector vi0 by angle:

wk < εijk z
vj0

T Ṽvi0

li0 2 lj0

around vk. wk is the right-handed rotation angle around vk,
with εijk 5 1 if ijk is an even permutation of 123, εijk 5 2
1 if ijk is an odd permutation of 123, and εijk 5 0 other-
wise.

Equating the second-order terms on the right and left
sides of Eq. [44],

O
k51

3

~vj0
T D̃0vk0vk0

T z vi2 1 vj0
T Ṽvk0vk0

T z vi1!

5 li0vj0
T z vi2 1 li1vj0

T z vi1 1 li2dij

~lj0 2 li0!vj0
T z vi2 1 O

k51

3

vj0
T Ṽvk0vk0

T z vi1 5 li1vj0
T z vi1 1 li2dij.

[48]

Setting i 5 j and using Eq. [42] gives the second-order
correction for the eigenvalues:

li2 5 O
k51

3

vi0
T Ṽvk0vk0

T z vi1

5 O
k51
~kÞi!

3
~vk0

T Ṽvi0!
2

li0 2 lk0
[49]

where Eq. [47] was used to get the second equality. The
second-order correction to state i is Ṽ evaluated between
the zeroth-order eigenvector and the admixture of the
other eigenvectors, produced by the perturbation.

One component of the second-order correction to the
eigenvectors is given by Eq. [43]. The remaining compo-
nents are obtained by evaluating Eq. [48] for i Þ j and
using Eqs. [46] and [47], which yields:

vj0
T z vi2 5 2

vi0
T Ṽvi0 z vj0

T Ṽvi0

~lj0 2 li0!
2 1 O

kÞi

vj0
T Ṽvk0

lj0 2 li0
z

vk0
T Ṽvi0

lk0 2 li0
~i Þ j!.

[50]

This is the second-order contribution to the eigenvector
orientation error.

APPENDIX B

For degenerate levels, the projection of vi
q onto vj0

p is,
according to Eq. [19],

vj0
pT z vi

q 5 djidpq 1 vj0
pT z vi1

q 1 vj0
pT z vi2

q 1 . . . . [51]

The completeness relation in the degenerate case is:

O
j51

3 O
p51

nj

vj0
p z vj0

pT 5 1 [52]

where nj is the degeneracy of the jth eigenvalue. The nor-
malization condition for the perturbed eigenvectors is:

vk
rT z vi

q 5 dkidrq.

Inserting Eq. [52] into the left side, and using Eq. [51], we
can solve the equation separately for each order. The first
order equation requires that:

vi0
qT z vi1

q 5 0.

As in the nondegenerate case, the first-order correction to
an eigenvector is perpendicular to the unperturbed axis.

The eigenvalue equation is:

D̃vi
q 5 li

q z vi
q. [53]

Inserting Eq. [52] on the left side of this relation and
projecting both sides onto vk0

r yields:

O
j,p

~vk0
rTD̃vj0

p !~vj0
pT z vi

q! 5 li
q~vk0

rT z vi
q!.

Substituting Eqs. [9], [51], and the top equality in Eq. [19],
we can again solve the equation one order at a time. The
zero order equation is an identity, as in the nondegenerate
case. The first-order equation is:

~lk0 2 li0!vk0
rT z vi1

q 1 vk0
rTṼvi0

q 5 li1
q z dikdqr. [54]

For k 5 i and r 5 q, this becomes:

li1
q 5 vi0

qTṼvi0
q

5 εi
q. [55]

Hence, the first-order shift is an eigenvalue of the pertur-
bation matrix. For k Þ i, Eq. [54] reduces to:
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vk0
rT z vi1

q 5
vk0

rTṼvi0
q

li0 2 lk0
~i Þ k!

which gives the components (in the unperturbed coordi-
nate frame) of the first-order corrections to the eigenvec-
tors. The second-order equation yields the eigenvalue cor-
rection:

li2
q 5 O

j51
~jÞi!

3 O
p51

nj ~vj0
pTṼvi0

q !2

li0 2 lj0
. [56]

APPENDIX C

Writing Eq. [56] for the most general case (non- or mixed
degeneracy) and summing over states in all levels gives:

O
i51

3 O
q51

ni

li2
q 5 O

i51

3 O
q51

ni O
j51
~jÞi!

3 O
p51

nj ~vj0
pTṼvi0

q !2

li0 2 lj0
.

The sum on the right can be broken into terms for i . j and
i , j:

O
i51

3 O
q51

ni

li2
q 5 O

i51

3 O
q51

ni O
j51

i21 O
p51

nj ~vj0
pTṼvi0

q !2

li0 2 lj0

1 O
i51

3 O
q51

ni O
j5i11

3 O
p51

nj ~vj0
pTṼvi0

q !2

li0 2 lj0

where terms like ¥j51
0 are understood to be zero. Inter-

changing the order of summation in the second term on the
right gives:

O
i51

3 O
q51

ni

li2
q 5 O

i51

3 O
q51

ni O
j51

i21 O
p51

nj ~vj0
pTṼvi0

q !2

li0 2 lj0

1 O
j51

3 O
p51

nj O
i51

j21 O
q51

ni ~vj0
pTṼvi0

q !2

li0 2 lj0
.

The index labels are arbitrary; exchanging the labels i and
j (and p and q) in the second term on the right gives:

O
i51

3 O
q51

ni

li2
q 5 O

i51

3 O
q51

ni O
j51

i21 O
p51

nj ~vj0
pTṼvi0

q !2

li0 2 lj0

1 O
i51

3 O
q51

ni O
j51

i21 O
p51

nj ~vi0
qTṼvj0

p !2

lj0 2 li0

5 O
i51

3 O
q51

ni O
j51

i21 O
p51

nj H ~vj0
pTṼvi0

q !2

li0 2 lj0
1

~vi0
qTṼvj0

p !2

lj0 2 li0
J 5 0

since vj0
pTṼvi0

q is a scalar, and hence equals its transpose.
The last result is Eq. [22].

APPENDIX D

Multivariate linear regression provides an estimate, D̃, of
the true tensor, D̃0, based on a set of diffusion-weighted
measurements (1). Equation [7] can be written for an entire
set of measurements by arranging the values of y(b̃) and
the error ε in column vector form (one row per measure-
ment). These are denoted by yW and εW, respectively. Simi-
larly, the unknown quantities, y0 5 ln(S0) and the ele-
ments of the diffusion tensor, can be arranged in a column
vector bW0:

bW 0 5 1
y0

~D̃0!11

~D̃0!22

~D̃0!33

~D̃0!12

~D̃0!13

~D̃0!23

2 . [57]

In terms of these vectors, Eq. [7] can be written:

yW 5 X̃ z bW 0 1 εW [58]

where each row of the design matrix, X̃, has the form:

~1 2b11 2b22 2b33 22b12 22b13 22b23!

and the values in row n depend on the b̃ matrix for the nth
measurement. The weighted least-squares solution to Eq.
[58] is:

bW 5 ~X̃TS̃ε
21X̃!21 z X̃TS̃ε

21 z yW [59]

where S̃ε is the covariance matrix of the error εW. The
covariance matrix of bW is:

S̃b 5 ~X̃TS̃ε
21X̃!21. [60]

Assuming the errors are independent in different mea-
surements, S̃ε is a diagonal matrix with diagonal elements
given by Eq. [8]. Therefore, the inverse of the covariance
matrix is also diagonal with elements:

~S̃ε
21!nn 5

^S~b̃n!&
2

sh
2 [61]

where b̃n is the b̃ matrix for the nth measurement and sh
2 is

the noise variance (assumed to be the same in all measure-
ments). Defining a diagonal weighting matrix, W̃, with
non-zero elements:

W̃nn ; e22tr~b̃n!zr̂n
TD̃0r̂n 5 S^S~b̃n!&

S0
D2

[62]
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where r̂n is the diffusion-weighting direction for measure-
ment n, we have:

S̃ε
21 5 SS0

sh
D 2

W̃ [63]

Substituting this relation in Eq. [60], the covariance matrix
of the estimated quantities can be written:

S̃b 5 Ssh

S0
D 2

z ~X̃TW̃X̃!21. [64]

The first term on the right side reflects the SNR of an
unweighted image. The second term depends on the dif-
fusion encoding scheme and the orientation of the princi-
pal axes relative to the gradient axes.

The diagonal elements of the covariance matrix S̃b give
the variance of individual components of bW . We have:

~S̃b!ii 5 ^~bW 2 bW 0!i
2&. [65]

The last six elements of (bW 2 bW0) are the errors in the
estimated diffusion tensor components. These are also the
elements of the perturbation matrix. According to the or-
dering convention of Eq. [57], (S̃b)11 gives the variance of
the estimated value of ln(S0). The mean square diagonal
elements of Ṽ are:

^~Ṽii!
2& 5 ^@Dii 2 ~D0!ii#

2&

5 ~S̃b!i11,i11 ~i # 3! [66]

and the mean square off-diagonal elements are:

^~Ṽij!
2& 5 ^@Dij 2 ~D0!ij#

2&

5 ~S̃b!i1j12,i1j12 ~i, j # 3; i Þ j!. [67]

These relations, combined with Eq. [64], give the variance
of the perturbation matrix elements in the coordinate sys-
tem defined by the gradient axes. Terms like ^(vj0

T Ṽvi0)2&
are easier to evaluate in the principal axis coordinate sys-
tem, however. Transforming the covariance matrix S̃b, the
variances of the perturbation matrix elements in the prin-
cipal axis coordinate frame are:

^~Ṽii!
2& 5 ~R̃S̃bR̃T!i11,i11 ~i # 3! [68]

and:

^~Ṽij!
2& 5 ~R̃S̃bR̃T!i1j12,i1j12 ~i, j # 3; i Þ j! [69]

where the transformation matrix for the covariance matrix
is (25):

R̃ 5 1
1 0 0 0 0 0 0
0 v10x

2 v10y
2 v10z

2 2v10xv10y 2v10xv10z 2v10yv10z

0 v20x
2 v20y

2 v20z
2 2v20xv20y 2v20xv20z 2v20yv20z

0 v30x
2 v30y

2 v30z
2 2v30xv30y 2v30xv30z 2v30yv30z

0 v10xv20x v10yv20y v10zv20z v10xv20y 1 v20xv10y v10xv20z 1 v20xv10z v10yv20z 1 v20yv10z

0 v10xv30x v10yv30y v10zv30z v10xv30y 1 v30xv10y v10xv30z 1 v30xv10z v10yv30z 1 v30yv10z

0 v20xv30x v20yv30y v20zv30z v20xv30y 1 v30xv20y v20xv30z 1 v30xv20z v20yv30z 1 v30yv20z

2 .

For clarity, the x, y, and z components of the eigenvectors
have been denoted explicitly. Hence, v10x is the x compo-
nent (in the gradient frame) of the unperturbed eigenvector
v10, and so on. In the principal axis frame, vj0

T Ṽvi0 5 Ṽji,
so Eq. [68] can be written:

^~vi0
T Ṽvi0!

2& 5 ~R̃S̃bR̃T!i11,i11 ~i # 3! [70]

and Eq. [69] becomes:

^~vj0
T Ṽvi0!

2& 5 ~R̃S̃bR̃T!i1j12,i1j12 ~i, j # 3; i Þ j!. [71]

Equation [70] gives the variance of the first-order shift for
nondegenerate eigenvalues (see Eq. [11]). Since the vari-
ance of the second-order bias is fourth order in the pertur-
bation, Eq. [70] will describe the total variance of the
eigenvalue to a good approximation. Equation [71] gives
the numerator in the expression for the mean shift of a
nondegenerate level (see Eq. [18]). Note that these relations
do not apply to a degenerate level, since in that case the
zero-order eigenvectors, and hence the transformation ma-

trix R̃, are also random. Substituting Eq. [64] into Eq. [71],
we have:

^~vj0
T Ṽvi0!

2& 5 Ssh

S0
D2

z ~R~X̃TW̃X̃!21R̃T!i1j12,i1j12 ~i Þ j! [72]

which relates the mean squared off-diagonal matrix ele-
ment to experimental parameters.
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